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1 Introduction

Matrix semigroups [46, 50, 51] are the great tool in concrete and thorough
investigation of detail abstract semigroup theory structure [11, 23, 29, 36].
Matrix representations [38, 49] are widely used in studying of finite semi-
groups [33, 52, 65], topological semigroups [3, 9] and free semigroups [8, 21].
Usually matrix semigroups are defined over a field K [40, 48, 47]. Neverthe-
less, after discovering of supersymmetry [61, 62] the realistic unified particle
theories began to be considered in superspace [22, 56]. In this picture all
variables and functions were defined not over a field K, but over Grassmann-
Banach superalgebras over K [53, 63] (or their generalizations [42, 43, 57]).
However, the noninvertible (and therefore semigroup) character of them was
ignored for a long time, and only recently the consistent studies of semigroups
in supersymmetric theories appeared [15, 16, 17]. In addition to their phys-
ical contents these investigations led to some nontrivial pure mathematical
constructions having unusual properties connected with noninvertibility and
zero divisors [14, 18]. In particular, it was shown [19] that supermatrices
of the special shape can form various strange and sandwich semigroups not
known before [25, 37].

In this paper we work out continuous supermatrix representations of semi-
group bands1 introduced in [19]. The Green’s relations on continuous zero
semigroups and wreath rectangular bands are studied in detail. We intro-
duce the “fine” equivalence relations which generalize them in some extent
and lead to the “multidimensional” analog of eggbox diagrams. Next inves-
tigations are connected with continuous superanalogs of 0-simple semigroups
and Rees’s theorem which will appear elsewhere.

2 Preliminaries

Let Λ be a commutative Banach Z2-graded superalgebra over a field K (where
K = R, C or Qp) with a decomposition into the direct sum: Λ = Λ0 ⊕ Λ1.
The elements a from Λ0 and Λ1 are homogeneous and have the fixed even

and odd parity defined as |a|
def
= {i ∈ {0, 1} = Z2| a ∈ Λi}. If Λ admit the

1We note that study of idempotent semigroup representations [58], especially the matrix
ones [20], is important by itself. The idempotents also appear and are widely used in
random matrix semigroup applications [6, 12, 39].
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decomposition into body and soul [53] as Λ = B ⊕ S, where B and S are
purely even and odd algebras over K respectively, the even homomorphism
rbody : Λ → B is called a body map and the odd homomorphism rsoul : Λ → S

is called a soul map [4, 44]. Usually Λ is modelled with the Grassmann
algebras ∧ (N) having N generators [53, 60] or ∧ (∞) [7, 10, 54]. The soul S

is obviously a proper two-sided ideal of Λ which is generated by Λ1. These
facts allow us to consider noninvertible morphisms on a par with invertible
ones (in some sense), which gives many interesting and nontrivial results (see
e.g. [15, 16, 17]).

We consider (p|q)-dimensional linear model superspace Λp|q over Λ (in
the sense of [5, 34]) as the even sector of the direct product Λp|q = Λp

0 × Λq
1

[53, 60]. The even morphisms Hom0

(

Λp|q,Λm|n
)

between superlinear spaces

Λp|q → Λm|n are described by means of (m+ n)× (p+ q)-supermatrices2 (for
details see [5, 35]).

3 Supermatrix semigroups

We consider (1 + 1) × (1 + 1)-supermatrices describing the elements from

Hom0

(

Λ1|1,Λ1|1
)

in the standard Λ1|1 basis [5]

M ≡

(

a α
β b

)

∈ MatΛ (1|1) (1)

where a, b ∈ Λ0, α, β ∈ Λ1 (in the following we use Latin letters for ele-
ments from Λ0 and Greek letters for ones from Λ1, and all odd elements
are nilpotent of index 2). For sets of matrices we also use correspond-

ing bold symbols, e.g. M
def
= {M ∈ MatΛ (1|1)}, and the set product is

M · N
def
= {∪MN |M,N ∈ MatΛ (1|1)}.

In this (1|1) case the supertrace defined as str : MatΛ (1|1) → Λ0 and
Berezinian (superdeterminant) defined as Ber : MatΛ (1|1)\{M | rbody (b) = 0} →
Λ0 are

strM = a− b, (2)

2The supermatrix theory per se has own problems [1, 31, 30], unexpected conclusions
[2, 55] and renewed standard theorems [59], which as a whole attach importance to more
deep investigation of supermatrix systems from the abstract viewpoint.
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BerM =
a

b
+
βα

b2
. (3)

In [19] we introduced two kinds of possible reductions of M .

Definition 1 Even-reduced supermatrices are elements from MatΛ (1|1) of
the form

Meven ≡

(

a α
0 b

)

∈ RMat even
Λ (1|1) ⊂ MatΛ (1|1) . (4)

Odd-reduced supermatrices are elements from MatΛ (1|1) of the form

Modd ≡

(

0 α
β b

)

∈ RMat odd
Λ (1|1) ⊂ MatΛ (1|1) . (5)

The odd-reduced supermatrices have a nilpotent Berezinian

BerModd =
βα

b2
⇒ (BerModd)

2 = 0 (6)

and satisfy

Mn
odd = bn−2

(

αβ αb
βb b2 − (n− 1)αβ

)

, (7)

which gives BerMn
odd = 0 and strMn

odd = bn−2 (nαβ − b2).
It is seen that M is a set sum of Meven and Modd

M = Meven∪Modd. (8)

The even- and odd-reduced supermatrices are mutually dual in the sense
of the Berezinian addition formula [19]

BerM = BerMeven + BerModd. (9)

The matrices from Mat (1|1) form a linear semigroup of (1 + 1)× (1 + 1)-

supermatrices under the standard supermatrix multiplication M (1|1)
def
=

{M | ·} [5]. Obviously, the even-reduced matrices Meven form a semigroup
Meven (1|1) which is a subsemigroup of M (1|1), because of Meven·Meven⊆ Meven.
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In general the odd-reduced matrices Modd do not form a semigroup, since
their multiplication is not closed

Modd(1)Modd(2) =

(

α1β2 α1b2
b1β2 b1b2 + β1α2

)

/∈ Modd. (10)

Nevertheless, some subset of Modd can form a semigroup. Indeed, due to
the existence of zero divisors in Λ, from (10) it follows that

Modd ·Modd ∩Modd 6= ∅ ⇒ αβ = 0. (11)

Proposition 2 1) The subsets Modd|αβ=0 ⊂ Modd of the odd-reduced ma-
trices satisfying αβ = 0 form a subsemigroup of M (1|1) under the standard
supermatrix multiplication.

2) In this semigroup the subset of matrices with β = 0 is a left ideal, and
one with α = 0 is a right ideal, the matrices with b = 0 form a two-sided
ideal.

Proof. Directly follows from (10). 2

Definition 3 An odd-reduced semigroup Modd (1|1) is a subsemigroup of
M (1|1) formed by the odd-reduced matrices Modd satisfying αβ = 0.

4 One parameter subsemigroups of odd-reduced

semigroup

Let us investigate one-parameter subsemigroups of Modd (1|1). The simplest
one is a semigroup of antidiagonal nilpotent supermatrices of the shape

Yα (t)
def
=

(

0 αt
α 0

)

. (12)

Together with a null supermatrix

Z
def
=

(

0 0
0 0

)

. (13)
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they form a continuous null semigroup Zα (1|1) having the null multiplication

Yα (t)Yα (u) = Z (14)

(cf. [11]).

Assertion 4 For any fixed t ∈ Λ1|0 the set {Yα (t) , Z} is a 0-minimal ideal
in Zα (1|1).

In search of nontrivial one parameter subsemigroups Modd (1|1) we con-
sider the odd-reduced supermatrices of the following shape

Pα (t)
def
=

(

0 αt
α 1

)

(15)

where t ∈ Λ1|0 is an even parameter of the Grassmann algebra Λ which
”numbers” elements Pα (t) and α ∈ Λ0|1 is a fixed odd element of Λ which
”numbers” the sets ∪

t
Pα (t).

Here we will study one-parameter subsemigroups in Modd (1|1) as abstract
semigroups [11, 36], but not as semigroups of operators [13, 28], which will
be done elsewhere.

First, we establish multiplication properties of Pα (t) supermatrices. From
(10) and (15) it is seen that

(

0 αt
α 1

)(

0 αu
α 1

)

=

(

0 αt
α 1

)

(16)

Corollary 5 The multiplication (16) is associative and so the Pα (t) super-
matrices form a semigroup Pα.

Corollary 6 All Pα (t) supermatrices are idempotent

(

0 αt
α 1

)2

=

(

0 αt
α 1

)

. (17)
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Proposition 7 If Pα (t) = Pα (u), then

t− u = Annα. (18)

Proof. From the definition (15) it follows that two Pα (t) supermatrices are
equal iff αt = αu, which gives (18). 2

Similarly we can introduce idempotent Qα (t) supermatrices of the shape

Qα (t)
def
=

(

0 α
αt 1

)

(19)

which satisfy
(

0 α
αt 1

)(

0 α
αu 1

)

=

(

0 α
αu 1

)

(20)

and form a semigroup Qα.

Assertion 8 The semigroups Pα and Qα contain no two sided zeros and
identities.

Assertion 9 The semigroups Pα and Qα are continuous unions of one ele-
ment groups with the action (17).

The relations (16)–(20) and

(

0 αt
α 1

)(

0 α
αu 1

)

=

(

0 αt
αu 1

)

def
= Ftu, (21)

(

0 α
αu 1

)(

0 αt
α 1

)

=

(

0 α
α 1

)

def
= E (22)

are important from the abstract viewpoint and will be exploited below.

Remark. In general the supermatrix multiplication is noncommutative, non-
invertible, but associative, therefore any objects admitting supermatrix rep-
resentation (with closed multiplication) are automatically semigroups.
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5 Continuous supermatrix representation of

zero semigroups

Let we consider an abstract set Pα which consists of elements pt ∈ Pα (t ∈
Λ1|0 is a continuous parameter) satisfying the multiplication law

pt ∗ pu = pt. (23)

Assertion 10 The multiplication (23) is associative and therefore the set

Pα form a semigroup Pα
def
= {Pα; ∗}.

Assertion 11 The semigroup Pα is isomorphic to the left zero semigroup
[11] in which every element is both a left zero and a right identity.

Proposition 12 The semigroup Pα is epimorphic to the semigroup Pα.

Proof. Comparing (16) and (23) we observe that the mapping ϕ : Pα → Pα

is a homomorphism. It is seen that two elements pt and pu satisfying (18)
have the same image, i.e.

ϕ (pt) = ϕ (pu) ⇔ t− u = Annα, pt,pu ∈ Pα. (24)

2

Definition 13 The relation

∆α = {(pt,pu) | t− u = Annα, pt,pu ∈ Pα} . (25)

is called α-equality relation.

Remark. If the superparameter t and α take value in different Grassmann
algebras which contain no mutually annihilating elements except zero, then
Annα = 0 and ∆α = ∆.

In the most of statements here the α-equality relation ∆α substitutes
formally the standard equality relation ∆, nevertheless the fact that ∆ 6= ∆α

leads to some new structures and results. Among latter the following
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Corollary 14 Kerϕ = ∪
t∈Annα

pt.

Remark. Outside Kerϕ the semigroup Pα is continuous and supersmooth,
which can be shown by means of standard methods of superanalysis [5, 63].

Assertion 15 The semigroup Pα is not reductive and not cancellative, since
p ∗ pt = p ∗ pu ⇒ pt∆αpu, but not pt = pu for all p ∈Pα. Therefore, the
supermatrix representation given by ϕ is not faithful.

Corollary 16 If t+ Annα ∩ u+ Annα 6= ∅, then pt∆αpu.

Similarly the semigroup Qα with the multiplication

qt ∗ qu = qu (26)

is isomorphic to the right zero semigroup in which every element is both a
right zero and a left identity and epimorphic to the semigroup Qα.

Definition 17 The semigroups Pα and Qα can be named “somewhere commu-

tative”3 or “almost anticommutative”, since for them pt ∗ pu = pu ∗ pt or
qt ∗ qu = qu ∗ qt gives αt = αu and t = u+ Annα.

Proposition 18 The semigroups Pα and Qα are regular, but not inverse.

Proof. For any two elements pt and pu using (23) we have pt ∗ pu ∗ pt =
(pt ∗ pu) ∗ pt = pt ∗ pt = pt. Similarly for qt and qu. Then pt has at least
one inverse element pu ∗ pt ∗ pu = pu. But pu is arbitrary, therefore in
semigroups Pα and Qα any two elements are inverse. However, they are not
inverse semigroups in which every element has a unique inverse [11]. 2

The ideal structure of Pα and Qα differs somehow from the one of the
left and right zero semigroups.

Proposition 19 Each element from Pα forms by itself a principal right
ideal, each element from Qα forms a principal left ideal, and therefore every
principal right and left ideals in Pα and Qα respectively have an idempotent
generator.

3By analogy with nowhere commutative rectangular bands [11].
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Proof. From (23) and (26) it follows that pt = pt ∗ Pα and qu = Qα ∗ qu. 2

Proposition 20 The semigroups Pα and Qα are left and right simple re-
spectively.

Proof. It is seen from (23) and (26) that Pα = Pα ∗ pt and Qα = qu ∗Qα. 2

The Green’s relations on the standard left zero semigroup are the follow-
ing: L-equivalence coincides with the universal relation, and R-equivalence
coincides with the equality relation [11]. In our case the first statement is
the same, but instead of the latter we have

Theorem 21 In Pα and Qα respectively R-equivalence and L-equivalence
coincide with the α-equality relation (25).

Proof. Consider the R-equivalence in Pα. The elements pt,pu ∈ Pα are
R-equivalent iff pt ∗ Pα = pu ∗ Pα. Using (25) we obtain R = ∆α. 2

6 Wreath rectangular band

Now we unify Pα and Qα semigroups in some nontrivial semigroup. First we
consider the unified set of elements Pα ∪ Qα and study their multiplication
properties. Using (21) and (22) we notice that Pα ∩ Qα = e, where ϕ (e) =
E from (22), and therefore e∆αpt=1 and e∆αqt=1. So we are forced to
distinguish the region t = 1 + Annα from other points in the parameter
superspace Λ1|0, and in what follows for any indices of pt and qt we imply
t 6= 1 + Annα.

Assertion 22 e is the left zero and right identity for pt, and e is the right
zero and left identity for qu, i.e. e ∗ pt = e, pt ∗ e = pt, and qu ∗ e = e,
e ∗ qu = qu.

Using (22) it is easily to check that qu∗pt = e, but the reverse product
needs to consider additional elements which are not included in Pα ∪ Qα.
From (21) we derive that

rtu= pt ∗ qu, (27)

where ϕ (rtu) = Ftu.

Let Rα
def
= ∪

t,u 6=1+Annα

rtu.
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Definition 23 A wreath rectangular band Wα is a set of idempotent ele-
ments Wα = Pα ∪ Qα ∪ Rα with a ∗-product (23) and the following Cayley
table

1 \ 2 e pt pu qt qu rtu rut rtw rvw

e e e e qt qu qu qt qw qw

pt pt pt pt rtt rtu rtu rtt rtw rtw

pu pu pu pu rut ruu ruu rut ruw ruw

qt e e e qt qu qu qt qw qw

qu e e e qt qu qu qt qw qw

rtu pt pt pt rtt rtu rtu rtt rtw rtw

rut pu pu pu rut ruu ruu rut ruw ruw

rtw pt pt pt rtt rtu rtu rtt rtw rtw

rvw pv pv pv rvt rvu rvu rvt rvw rvw

which is associative4 (as it should be).

From the Cayley table we can observe the following continuous subsemi-
groups in the wreath rectangular band:

• e - one element “near identity” subsemigroup;

• P̃α =

{

∪
t6=1+Annα

pt; ∗

}

– “reduced” left zero semigroup;

• Pα =

{

∪
t6=1+Annα

pt ∪ e; ∗

}

– full left zero semigroup;

• Q̃α =

{

∪
t6=1+Annα

qt; ∗

}

– “reduced” right zero semigroup;

• Qα =

{

∪
t6=1+Annα

qt ∪ e; ∗

}

– full right zero semigroup;

4For convenience and clearness we display some additional relations.
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• F̃ (1|1)
α =

{

∪
t,u 6=1+Annα

rtu; ∗

}

– “reduced” rectangular band;

• F (1|1)
α =

{

∪
t,u 6=1+Annα

rtu ∪ e; ∗

}

– full rectangular band;

• VL
α =

{

∪
t,u 6=1+Annα

rtu ∪ pt; ∗

}

– “mixed” left rectangular band;

• VR
α =

{

∪
t,u 6=1+Annα

rtu ∪ qt; ∗

}

– “mixed” right rectangular band.

Thus we obtained the continuous supermatrix representation for the left
and right zero semigroups and constructed from it the rectangular band su-
permatrix representation. It is well known that any rectangular band iso-
morphic to a Cartesian product of the left and right zero semigroups [29, 45].
Here we derived manifestly that (see (27)) and presented the concrete con-
struction (21). In addition, we unified all the above semigroups in one object,
viz. a wreath rectangular band.

7 Rectangular band continuous representa-

tion

The rectangular band multiplication is presented in the right lower corner of
the Cayley table. Usually [11, 29] it is defined by one relation

rtu ∗ rvw = rtw. (28)

In our case the indices are even Grassmann parameters from Λ1|0. As
for zero semigroups that also leads to some special peculiarities in the ideal
structure of such bands. Another difference is the absence of the condition
u = v which arises in some applications from the finite nature of indices con-
sidered as numbers of corresponding rows and columns in element matrices
(see e.g. [32]).

Let us consider the Green’s relations on F (1|1)
α .

Proposition 24 Any two elements in F (1|1)
α are J - and D-equivalent.

12



Proof. From (28) we derive

rtu ∗ rvw ∗ rtu = rtw ∗ rtu = rtu, (29)

rvw ∗ rtu ∗ rvw = rvw ∗ rtw = rvw

for any t, u, v, w ∈ Λ1|0. First we notice that these equalities coincide with
the definition of J -classes [11], therefore any two elements are J -equivalent,
and so J coincides with the universal relation on F (1|1)

α . Next using (29) we
observe that always rtuRrtu ∗rvw and rtu ∗rvwLrvw. Since D = L◦R = R◦L
(see e.g. [29]), then rtuDrvw. 2

Assertion 25 Every R-class Rrtu
consists of elements rtu which are ∆α-

equivalent by the first index, i.e. rtuRrvw ⇔ t − v = Annα, and every
L-class Lrtu

consists of elements rtu which are ∆α-equivalent by the second
index, i.e. rtuLrvw ⇔ u− w = Annα.

Proof. That follows from (29), the manifest rectangular band decomposition
(27) and Theorem 21. 2

So that the intersection of L- and R-classes is nonempty. For the ordinary
rectangular bands every H-class consists of a single element [11, 29]. In our
case the situation is more complicated.

Definition 26 The relation

∆(1|1)
α = {(rtu, rvw) | t− v = Annα, u− w = Annα, rtu, rvw ∈ Rα} . (30)

is called a double α-equality relation.

Theorem 27 Every H-class of F (1|1)
α consists of double ∆(1|1)

α -equivalent el-
ements satisfying rtu∆

(2)
α rvw, and so H = ∆(1|1)

α .

Proof. From (29) and the definitions (21) it follows that the intersection
of L- and R-classes happens when αt = αv and αu = αw. That gives
t = v + Annα, u = w + Annα which coincides with the double α-equality
relation (30). 2

Let us consider the mapping ψ : F (1|1)
α → F (1|1)

α /R×F (1|1)
α /L which maps

an element rtu to its R- and L-classes by

ψ (rtu) = {Rrtu
, Lrtu

} . (31)

In the standard case ψ is a bijection [29]. Now we have

13



Assertion 28 The mapping ψ is a surjection.

Proof. That follows from Theorem 21 and the decomposition (27). 2

Let the Cartesian product F (1|1)
α /R×F (1|1)

α /L is furnished with the rect-
angular band ⋆-multiplication of its R- and L-classes analogous to (28), i.e.

{Rrtu
, Lrtu

} ⋆ {Rrvw
, Lrvw

} = {Rrtu
, Lrvw

} . (32)

For the standard rectangular bands the mapping ψ is an isomorphism
[29, 41]. In our case we have

Theorem 29 The mapping ψ is an epimorphism.

Proof. First we observe from (29) that

Rrtu∗rvw
= Rrtu

, (33)

Lrtu∗rvw
= Lrvw

,

and so under the ⋆-multiplication (32) the mapping ψ is a homomorphism,
since

ψ (rtu ∗ rvw) = {Rrtu∗rvw
, Lrtu∗rvw

} = {Rrtu
, Lrvw

} (34)

= {Rrtu
, Lrtu

} ⋆ {Rrvw
, Lrvw

} = ψ (rtu) ∗ ψ (rvw) .

Then a surjective homomorphism is an epimorphism (e.g. [26, 27]). 2

8 Higher (n|n)-band continuous representations

Almost all above results can be generalized for the higher rectangular (n|n)
bands containing 2n continuous even Grassmann parameters. The corre-
sponding matrix construction is

Ft1t2...tn,u1u2...un

def
=



















0 αt1 αt2 . . . αtn
αu1

αu2
...

αun

I (n× n)



















∈ RMat odd
Λ (1|n) , (35)
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where t1, t2 . . . tn, u1, u2 . . . un ∈ Λ1|0 are even parameters, α ∈ Λ1|0, I (n× n)
is the unit matrix, and the matrix multiplication is

Ft1t2...tn,u1u2...un
Ft′

1
t′
2
...t′n,u′

1
u′

2
...u′

n
= Ft1t2...tn,u′

1
u′

2
...u′

n
. (36)

Thus the idempotent supermatrices Ft1t2...tn,u1u2...un
form a semigroup

F(n|n)
α .

Definition 30 A higher (n|n)-band F (n|n)
α ∋ ft1t2...tn,u1u2...un

is represented
by the supermatrices RMat odd

Λ (1|n) of the form (35).

The results of the Section 5 with some slight differences hold valid for
F (n|n)

α as well.

Definition 31 In F (n|n)
α the relation

∆(n|n)
α

def
= {

(

ft1t2...tn,u1u2...un
, ft′

1
t′
2
...t′n,u′

1
u′

2
...u′

n

)

| tk − t′k = Annα,

uk − u′k = Annα, 1 ≤ k ≤ n, ft1t2...tn,u1u2...un
, ft′

1
t′
2
...t′n,u′

1
u′

2
...u′

n
∈ F (2n)

α }
(37)

is called a (n|n)-ple α-equality relation.

The semigroup F (n|n)
α is also epimorphic to Fα, and two ∆(n|n)

α -equivalent
elements of F (n|n)

α have the same image.
Let us consider RMat odd

Λ (k|m) idempotent supermatrices of the shape

FTU
def
=

(

0 αT
αU I

)

, (38)

where T (k ×m) and U (m× k) are the band even parameter ordinary ma-
trices and I (m×m) is the unit matrix. This band contains maximum 2km
parameters from Λ1|0.

The multiplication is
(

0 αT
αU I

)(

0 αT ′

αU ′ I

)

=

(

0 αT
αU ′ I

)

, (39)

which coincides in block form with the rectangular band multiplication (28)

FTUFT ′U ′ = FTU ′. (40)
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Theorem 32 If n = km the representations given by (35) and (38) are
isomorphic.

Proof. Since in (36) and (40) there exist no multiplication between param-
eters, and so the representations given by matrices (35) and (38) differ by
permutation if n = km. 2

Corollary 33 The supermatrices RMat odd
Λ (1|n) of the shape (35) exhaust

all possible (n|n)-band continuous representations.

Remark. The supermatrices (35) represent (k|m)-bands as well, where 1 ≤
k ≤ n, 1 ≤ m ≤ n. In this situation tk+1 = 1 + Annα, . . . tn = 1 +
Annα, um+1 = 1+Annα, . . . un = 1+Annα. So the above isomorphism takes
place for different bands having the same number of parameters Therefore, we
will consider below mostly the full (n|n)-bands, implying that they contain
all particular and reduced cases.

Remark. For k = 0 and m = 0 they describe m-right zero semigroups Q(m)
α

and k-left zero semigroups P(k)
α respectively having the following multiplica-

tion laws (cf. (23) and (26))

qu1u2...um
∗ qu′

1
u′

2
...u′

m
= qu′

1
u′

2
...u′

m
,

pt1t2...tk ∗ pt′
1
t′
2
...t′

k
= pt1t2...tk

.
(41)

Proposition 34 The m-right zero semigroups Q(m)
α and k-left zero semi-

groups P(k)
α are irreducible in the sense that they cannot be presented as a

direct product of “1-dimensional” right zero Qα and left zero Pα semigroups
respectively.

Proof. It follows directly from comparing of the structure of supermatrices
(15), (19) and (35). 2

Proposition 35 For the purpose of constructing (k|m)-bands one cannot
use “1-dimensional” right zero Qα and left zero Pα semigroups, because they
reduce it to the ordinary “2-dimensional” rectangular band.
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Proof. Indeed let f̃t1t2...tk ,u1u2...um
= pt1

∗pt2 . . .∗ptk∗qu1
∗qu2

. . .∗qum
. Then us-

ing the Cayley table above we derive f̃t1t2...tk ,u1u2...um
= pt1∗qum

which trivially
coincides with (27). Thus any combination of elements from “1-dimensional”
right zero and left zero semigroups will not lead to new construction other
than in the Cayley table. 2

Instead we have the following decomposition of a (k|m)-band into k-left
zero semigroup P(k)

α and m-right zero semigroups Q(m)
α k-left zero semigroup

P(k)
α

ft1t2...tk ,u′

1
u′

2
...u′

m
= pt1t2...tk

∗ qu′

1
u′

2
...u′

m
. (42)

Despite this formula is similar to (27), we stress that the increasing of
number of superparameters is not an artificial trick, but a natural way of
searching for new constructions leading to generalization of Green’s relations
and fine ideal structure of (n|n)-bands, which has no analogs in the standard
approach [11, 29, 45].

9 Fine ideal structure of (n|n)-bands

Let us consider the Green’s relations for (n|n)-bands. We will try to establish
the supermatrix meaning of properties of R,L,D,H-classes. It will allow us
to define and study new equivalences most naturally, as well as to clear the
previous constructions. For clarity we use (2|2)-band representation, and the
extending all the results to (n|n)-bands can be easily done without further
detail explanations.

The exact shape of the (2|2)-band F (2|2)
α ∋ ft1t2,u1u2

supermatrix repre-
sentation is

Ft1t2,u1u2
=







0 αt1 αt2
αu1 1 0
αu2 0 1





 . (43)

According to the definition of R-classes [11], two elements Ft1t2,u1u2
and

Ft′
1
t′
2
,u′

1
u′

2
are R-equivalent iff there exist two another elements Xx1x2,y1y2

,
Wv1v2,w1w2

such that Ft1t2,u1u2
Xx1x2,y1y2

= Ft′
1
t′
2
,u′

1
u′

2
and Ft′

1
t′
2
,u′

1
u′

2
Wv1v2,w1w2

=
Ft1t2,u1u2

simultaneously. In manifest form

Ft1t2,u1u2
Xx1x2,y1y2

=







0 αt1 αt2
αy1 1 0
αy2 0 1





 =







0 αt′1 αt′2
αu′1 1 0
αu′2 0 1





 (44)
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and

Ft′
1
t′
2
,u′

1
u′

2
Wv1v2,w1w2

=







0 αt′1 αt′2
αw1 1 0
αw2 0 1





 =







0 αt1 αt2
αu1 1 0
αu2 0 1





 . (45)

To satisfy the last equalities in (44) and (45) we should choose

αy1 = αu′1, αy1 = αu′1,
αw1 = αu1, αw2 = αu2,

(46)

and
αt1 = αt′1, αt2 = αt′2. (47)

Due to the arbitrariness of Xx1x2,y1y2
and Wv1v2,w1w2

the first equalities
(46) can be always solved by parameter choice. The second equations (47)
are the definition of R-class of (2|2)-band in the supermatrix interpretation.
Thus we have the following general

Definition 36 The R-classes of (n|n)-band consist of elements having all
(!) αtk fixed, where 1 ≤ k ≤ n.

As the dual counterpart we formulate

Definition 37 The L-classes of (n|n)-band consist of elements having all (!)
αuk fixed, where 1 ≤ k ≤ n.

In such a picture it is obvious that the join of these relations D = R∨L
covers all possible elements, and therefore any two elements in (n|n)-band
are D-equivalent (cf. Proposition 24) . The intersection of them H = R∩L
obviously consists of the elements with all (!) αtk and αuk fixed. Indeed
there is here the source of the (n|n)-ple α-equality relation definition (37).

Proposition 38 In (2|2)-band J -relation coincides with the universal rela-
tion.

Proof. Multiplying (44) by Ft1t2,u1u2
from the right and by Xx1x2,y1y2

from the
left we obtain

Ft1t2,u1u2
Xx1x2,y1y2

Ft1t2,u1u2
= Ft1t2,u1u2

,
Xx1x2,y1y2

Ft1t2,u1u2
Xx1x2,y1y2

= Xx1x2,y1y2

(48)
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for any t1, t2, u1, u2, x1, x2, y1, y2 ∈ Λ(1|0), which coincides with the definition
of J -relation. The arbitrariness of Ft1t2,u1u2

and Xx1x2,y1y2
proves the state-

ment. 2

Summing up the standard approach for (2|2)-bands we have

ft1t2,u1u2
Rft′

1
t′
2
,u′

1
u′

2
⇔ {αt1 = αt′1 ∧ αt2 = αt′2} , (49)

ft1t2,u1u2
Lft′

1
t′
2
,u′

1
u′

2
⇔ {αu1 = αu′1 ∧ αu2 = αu′2} , (50)

ft1t2,u1u2
Dft′

1
t′
2
,u′

1
u′

2
⇔

{

(αt1 = αt′1 ∧ αt2 = αt′2)∨
(αu1 = αu′1 ∧ αu2 = αu′2)

}

, (51)

ft1t2,u1u2
Hft′

1
t′
2
,u′

1
u′

2
⇔

{

(αt1 = αt′1 ∧ αt2 = αt′2)∧
(αu1 = αu′1 ∧ αu2 = αu′2)

}

. (52)

Now we are ready to introduce the fine ideal structure and understand
what was missed by the standard approach. From (49) and (50) it is seen that
the separate four possibilities for the equations to satisfy are not covered by
the ordinary R- and L-equivalent relations. It is clear , why we wrote above
exclamation marks: these statements will be revised. So we are forced to
define more general relations, we call them “fine equivalent relations”. They
are appropriate to describe all possible classes of elements in (n|n)-bands
missed by the standard approach. First we define them as applied to our
particular case for clarity.

Definition 39 The fine R(k)- and L(k)-relations on the (2|2)-band are de-
fined by

ft1t2,u1u2
R(1)ft′

1
t′
2
,u′

1
u′

2
⇔ {αt1 = αt′1} , (53)

ft1t2,u1u2
R(2)ft′

1
t′
2
,u′

1
u′

2
⇔ {αt2 = αt′2} , (54)

ft1t2,u1u2
L(1)ft′

1
t′
2
,u′

1
u′

2
⇔ {αu1 = αu′1} , (55)

ft1t2,u1u2
L(2)ft′

1
t′
2
,u′

1
u′

2
⇔ {αu2 = αu′2} . (56)

Proposition 40 The fine R(k)- and L(k)-relations are equivalence relations.
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Proof. Follows from the manifest form of the multiplication and (44) and
(45). 2

Therefore, they divide F (2|2)
α to four fine equivalence classes F (2|2)

α /R(k)

and F (2|2)
α /L(k) as follows

R
(1)
f

=
{

ft1t2,u1u2
∈ F (2|2)

α |αt1 = const
}

, (57)

R
(2)
f

=
{

ft1t2,u1u2
∈ F (2|2)

α |αt2 = const
}

, (58)

L
(1)
f

=
{

ft1t2,u1u2
∈ F (2|2)

α |αu1 = const
}

, (59)

L
(2)
f

=
{

ft1t2,u1u2
∈ F (2|2)

α |αu2 = const
}

. (60)

For clearness we can present schematically

R
(1)
f

R
(2)
f

l l

L
(1)
f

↔

L
(2)
f

↔







0 αt1 αt2
αu1 1 0
αu2 0 1





 , (61)

where arrows show which element of the supermatrix is fixed according to a
given fine equivalence relation.

From them we can obtain all known relations

R(1) ∩R(2) = R, (62)

L(1) ∩ L(2) = L, (63)

and
(

R(1) ∩R(2)
)

∩
(

L(1) ∩ L(2)
)

= H, (64)
(

R(1) ∩R(2)
)

∨
(

L(1) ∩ L(2)
)

= D. (65)

However there are many other possible “mixed” equivalences which can
be classified using the definitions

H(i|j) = R(i) ∩ L(j), (66)

D(i|j) = R(i) ∨ L(j), (67)
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H(ij|k) =
(

R(i) ∩R(j)
)

∩ L(k), (68)

H(i|kl) = R(i) ∩
(

L(k) ∩ L(l)
)

, (69)

D(ij|k) =
(

R(i) ∩R(j)
)

∨ L(k), (70)

D(i|kl) = R(i) ∨
(

L(k) ∩ L(l)
)

. (71)

The graphic interpretation of the mixed equivalence relations is given by
the following diagram

HH(12|1)

H(2|1) H(2|12) H(2|2)

H(12|2)

H(1|2)H(1|12)H(1|1)

R(2)

R(1)

R

LL(1)

L(2)

��
��

��
��

��
��

(72)

where the standard Green’s relations are marked with circles. In (72) the
standard R- and L-relations occupy 4 small squares longwise, the H(i|j)-
relations occupy 4 small squares in square, the H(ij|k)- and H(i|jk)-relations
occupy 2 small squares, the standard H-relation occupies 1 small square.

We observe that the mixed relations (66)-(71) are “wider” in some sense
than the standard ones (62)-(65). Therefore, using them we are able to
describe thoroughly and appropriately all classes of elements from (n|n)-
bands including those which are missed when one uses the standard Green’s
relations only5.

5For nonnegative ordinary matrices the generalized Green’s relations (in some different
sense) were studied in [64].
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For every mixed relation above we can determine a corresponding class
using obvious definitions. Then for every mixed D-class we can build the
mixed eggbox diagram [11] of the fine R,L-classes which will have so many
dimensions how many terms a given mixed relation has in its right hand
side of (67), (70) and (71). For instance, the eggbox diagrams of D(i|j)-
classes are two dimensional, but ones of D(ij|k) and D(i|jk)-classes should be
3-dimensional. In case of (n|n)-bands one has to consider all possible k-
dimensional eggbox diagrams, where 2 ≤ k ≤ n− 1.

The introduced fine equivalence relations (53)-(56) admit a subsemigroup
interpretation.

Lemma 41 The elements of F (n|n)
α having αtk = βk and αuk = γk, where

βk, γk ∈ Λ0|1 are fixed, and 1 ≤ k ≤ m, form various m-index subsemigroups.

Proof. It follows from the manifest form of matrix multiplication in (35). 2

We consider (n− 1)-index subsemigroups of F (n|n)
α . They consist of ele-

ments having all but one αtk and all but one αuk fixed. Let

U (k)
α

def
=
{

ft1t2...tn,u1u2...un
∈ F (n|n)

α | ∧
i6=k

αti = βi ∧
i6=k

αui = γi

}

(73)

be a (n− 1)-index subsemigroup which has only one nonfixed pair αtk, αuk.
The Green’s relations on the subsemigroup U (k)

α are the following

ft1t2...tn,u1u2...un
R(k)

U ft′
1
t′
2
...t′n,u′

1
u′

2
...u′

n
⇔ {αtk = αt′k} , (74)

ft1t2...tn,u1u2...un
L(k)

U ft′
1
t′
2
...t′n,u′

1
u′

2
...u′

n
⇔ {αuk = αu′k} , (75)

ft1t2...tn,u1u2...un
H(k)

U ft′
1
t′
2
...t′n,u′

1
u′

2
...u′

n
⇔ {αtk = αt′k ∧ αuk = αu′k} , (76)

ft1t2...tn,u1u2...un
D(k)

U ft′
1
t′
2
...t′n,u′

1
u′

2
...u′

n
⇔ {αtk = αt′k ∨ αuk = αu′k} , (77)

where ft1t2...tn,u1u2...un
, ft′

1
t′
2
...t′n,u′

1
u′

2
...u′

n
∈ U (k)

α ⊂ F (n|n)
α .

Theorem 42 The Green’s relations on U (k)
α are the restrictions of the cor-

responding fine relations (53)-(56) on F (n|n)
α to the subsemigroup U (k)

α

R(k)
U = R(k) ∩

(

U (k)
α × U (k)

α

)

, (78)
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L(k)
U = L(k) ∩

(

U (k)
α × U (k)

α

)

, (79)

H(k)
U = H(k|k) ∩

(

U (k)
α × U (k)

α

)

, (80)

D(k)
U = D(k|k) ∩

(

U (k)
α × U (k)

α

)

. (81)

Proof. It is sufficient to prove the statement for the particular case of F (2|2)
α

and U (1)
α , and then to derive the general one by induction. Using the manifest

form of R-class definition (44)-(45) we conclude that the condition αt1 = αt′1
is common for the fine R(k)-classes and for the subsemigroup R(k)

U -classes.
By analogy one can prove other equalities. 2

Remark. The second condition αt2 = αt′2 (which is a second part of the
definition of the ordinary R-relation for F (2|2)

α (49)) holds in U (1)
α as well,

but due to the subsemigroup own definition (αt2 = β2 = const, αu2 = γ2 =
const), however αt2 = αt′2 does not enter to the fine relation R(k) at all.
Therefore the latter is the most general one among the R-relations under
consideration.

Remark. The Theorem 42 can be considered in view of [24], where the for-
mulas similar to (78)-(80) were proved, but with ordinary Green’s relations
on the right hand side. Referring to the Diagram 72 we conclude that our
result contains the ordinary case [24] as a particular one.

Moreover, we assume that the Theorem 42 has more deep sense and gives
another treatment to the fine equivalence relations.

Conjecture 43 The Green’s relations on a subsemigroup U of S have as
counterpart prolonged images in S indeed the fine equivalence relations on S.

We proved this statement for the particular case of continuous (n|n)-
bands. It would be interesting to find and investigate other possible algebraic
systems where the Conjecture 43 is true.
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